CSE 451: Operating Systems
Winter 2026

Module 2
Kernel Abstraction

Gary Kimura

Operating System History

Batch to timeshare

Single User to multiuser to single user (PC) to multiuser
(servers, etc.)

Cost of computer time compared to people time

Single processor” to multiple processors to distributed
systems

There is a lot of legacy code in Operating Systems specifically for
dealing with single processor systems. What does that mean today?

DEVELOPING AND DEBUGGING
LARGE SYSTEMS

[Command Interpreter]

— i
[Infor'ma’rion S%%;\\

\(Accoum“ing System)
77 T N\

Pl

File Syst

k:{Sec;ndar‘y r;}t{mge]
Process Management Management Manageme
Jr\“/ o /

I/0 System

Some Engineering Advice
* Debugging as Engineering

* Much of your time in this course will be spent debugging

— In industry, 50% of software dev is debugging
— Even more for kernel development

* When at all possible, code and test changes
incrementally, and keep a working copy that you can
always fall back to.

The science of debugging

* Debugging as Science

* Understanding -> design -> code
— not the opposite

 Form a hypothesis that explains the bug
— Which tests work, which don’t. Why?
— Add tests to narrow possible outcomes

* Use best practices
— Always walk through your code line by line
— Module tests — narrow scope of where problem is

— Develop code in stages, with dummy replacements for
later functionality

% L T i = ITsS NOT
1 7 7~ SUPPOSED
. TOBE
ERGONOMIC.

HARDWARE MODES

Hardware Modes

Who actually gets to control the hardware?

The Application?

 Advantages?

 Disadvantages (aka, what can possibly go wrong?)
The Operating System?

 Acting on behalf of the application
 Advantages?

 Disadvantages?

Challenge: Protection using Restrictions

 Why do we execute code with restricted privileges?

— Either because the code is buggy or if it might be
malicious

* Some examples:
— A script running in a web browser
— A program you just downloaded off the Internet

— A program you just wrote that you haven’t tested yet

— Or the program that gets stuck in an infinite loop

Hardware Support to the Rescue
Dual-Mode Operation

Kernel mode
— Execution with the full privileges of the hardware

— Read/write to any memory, access any |/O device,
read/write any disk sector, send/read any packet

User mode

— Limited privileges (How is this done?)

On the x86, mode stored in EFLAGS register
On the MIPS, mode in the status register

Hardware Support: Dual-Mode Restrictions

Privileged instructions

— Available to kernel

— Not available to user code

Limits on memory accesses

— To prevent user code from overwriting the kernel
— To prevent user from reading data it shouldn’t
Timer

— To regain control from a user program in a loop

Safe way to switch from user mode to kernel mode, and

vice versa

Privileged instructions

 Examples
e Halt Processor Privileged
* Disable interrupts Privileged
* Change mode Privileged
* Load and store No, but there is a but...

* What should happen if a user program attempts to execute
a privileged instruction?
* An Exception is raised, and the OS takes control

How to use the two modes

It is a little naive but okay to say that the OS only runs in
kernel mode and user apps run in user mode.

* s that why they’re called kernel mode and user mode?
Important to understand when and how the system switches
between the modes.

* From Kernel Mode to User Mode

* From User Mode to Kernel Mode

Mode Switch (Kernel to User)

e Without getting into what is running here is generally
how one goes from kernel mode to user mode

1. New process/new thread start
e Jump to first instruction in program/thread
2. Return from interrupt, exception, system call
* Resume suspended execution
3. Process/thread context switch
* Resume some other process
4. User-level upcall (UNIX signal)
* Asynchronous notification to user program

Mode Switch (User to Kernel)

* From user mode to kernel mode
— Interrupts
* Triggered by timer and 1/O devices
* /deally hidden or transparent to the user
— Exceptions

* Triggered by unexpected program behavior or
malicious behavior!

 Ability to correct and redo the instruction
— System calls (aka protected procedure call, or a trap)

* Request by program for kernel to do some operation
on its behalf

* Only limited # of very carefully coded entry points

Device Interrupts: Example

 Here is the situation: The OS kernel needs to
communicate with physical devices

* Devices operate asynchronously from the CPU
— One solution is polling: Kernel waits until I/O is done
— Another solution are Interrupts: Kernel can do other work
in the meantime

 Example: Device access to memory

1. Programmed I/O: CPU reads and writes to device
2. Device has Direct memory access (DMA)
3. When I/O completes the Device interrupts the CPU

How do Device Interrupts work?

Where does the CPU run after an interrupt? Kernel
What stack does it use? Kernel Stack

Is the work the CPU had been doing before the interrupt
lost forever? No

If not, how does the CPU know how to resume that
work? We’ll see

But first, a simple(?) picture of memory

KERNEL

Stack

USER Code & Data

Stack

Code & Data

USER

KERNEL

Another viewpoint

Code & Data |Code & Datg Code & Data | Code & Data
Stack Stack Stack Stack
Stack Stack Stack Stack

Stack Stack Code & Data

Example of an Interrupt: Hardware Timer

Hardware device that periodically interrupts the processor

e Returns control to the kernel handler

* Interrupt frequency set by the kernel and not by user
code

Side note: Interrupts can be temporarily deferred by the
kernel

e But not by user code!

* Interrupt deferral crucial for implementing mutual
exclusion

How do we take interrupts safely?

* |nterrupt vector

— Limited number of entry points into kernel

e Atomic transfer of control
— Single instruction to change:
* Program counter
 Stack pointer
* Memory protection
* Kernel/user mode

* Transparent restartable execution

— User program does not know interrupt occurred

Interrupt Vector

* Table set up by OS kernel; pointers to code to run on

different events

Processor Interrupt
Register Vector

» handleTimerinterrupt() {

b 4)

*» handleDivideByZero() {

)

* handleSystemCall() {

)

Interrupt Stack

e Per-processor, located in kernel (not user) memory
— Usually a process/thread has both: kernel and user
stack

 Why can’t the interrupt handler run on the stack of the
interrupted user process?

Interrupt Stack

Kernel Stack

Interrupt Masking

* Interrupt handler runs with interrupts off
— Re-enabled when interrupt completes
e OS kernel can also turn interrupts off
— Eg., when determining the next process/thread to run
— On x86
* CLI: disable interrrupts
 STl: enable interrupts
* Only applies to the current CPU (on a multicore)

 We’ll need this to implement synchronization in chapter 5

Interrupt Handlers

e Often part of a device driver
* Non-blocking, run to completion
— Minimum necessary to allow device to take next
interrupt

— Any waiting must be limited duration
— Wake up other threads to do any real work
* Linux: semaphore
* Rest of device driver runs as a kernel thread

Case Study: MIPS Interrupt/Trap

Two entry points: TLB miss handler, everything else

Save type: syscall, exception, interrupt
— And which type of interrupt/exception

Save program counter: where to resume

Save old mode, interruptable bits to status register
Set mode bit to kernel

Set interrupts disabled

For memory faults
— Save virtual address and virtual page

e Jump to general exception handler

Case Study: x86 Interrupt

Save current stack pointer

Save current program counter

Save current processor status word (condition codes)
Switch to kernel stack; put SP, PC, PSW on stack
Switch to kernel mode

Vector through interrupt table

Interrupt handler saves registers it might clobber

At end of Interrupt Handler

* Handler restores saved registers
e Atomically return to interrupted process/thread
— Restore program counter
— Restore program stack
— Restore processor status word/condition codes
— Switch to user mode

Summary: Entering the Kernel

As a rule of thumb the kernel gets executed (entered) through

interrupts, exceptions, and system calls.

* Interrupts —a device needs servicing; the OS will continue
the interrupted process when able

* Exceptions —a process did something that the OS needs to
fix

 System calls —a process is asking the OS to perform a
privileged operation

Exceptions and System calls serve a different scenario than
Interrupts, but share much of the same mechanism

Exceptions and System Calls

Examples of * divide by zero
exceptions v" overflow or underflow

* illegal Instruction
* Joad/store from a protected location

Examples of * open/create a file
system calls read/write from a file

allocate memory (e.g., malloc)
v" Sometimes these are handled in
user mode libraries

Dealing with Exceptions

OS can choose to fix the program’s exception

* For example, make an illegal memory address legal
OS can choose to alert the program of the exception

* For example, divide by zero
OS can choose to terminate the program

Are there other choices?

Dealing with System Calls

Locate arguments
— In registers or on user stack
— Translate user addresses into kernel addresses

Copy arguments

— From user memory into kernel memory

— Protect kernel from malicious code evading checks
Validate arguments

— Protect kernel from errors in user code

Copy results back into user memory

— Translate kernel addresses into user addresses

System calls at C level

User Side

main() { ...

int fd = open(argl, arg2);

open() { /] stub
movq $15,%rax // 15 means sys_open()
int $64 /] syscall or trap
retq

}

Kernel Side

actually_open(...) {
/] does the open

sys_open() { //stub
/| checks and captures args into kernel
actually_open(...);
/| copies return value

return;

Goes through generalized interrupt/exception/syscall dispatch code
to save registers, etc. before calling the appropriate stub

Who invented all this stuff?

A lot of engineering tradeoffs

Various choices for handling interrupts
What should the Hardware handle?
What can the Software do?

What if plans and designs change?

Story of an early system that needed two CPUs to function
correctly...

Quick Recap

* Overall emphasis of this section is Hardware support for OS

1. At least two modes of operation (user and kernel)
2. Transitioning from User to Kernel, and back

* Easy peasy — but sometimes it seems you can’t trust anyone

Even the best plans go awry

 CrowdStrike that took out a lot of
computers in July of 2024 with the

BSOD.
* This explanation that might be credible.

2

o5
> S
S S

Simple Memory Protection

Towards Virtual Addresses

* Problems with base and bounds?

Virtual Addresses

* Translation donein

, Virtual Addresses Physical
hardware, using a (Process Layout) Memory
table

« Table set up by Code
operating system Code
kernel Data
Data
Heap
: Heap
! Stack
Stack

Division between User and Kernel memory

User virtual address 0x00000000 and Ox7FFFFFFF
space:

Kernel virtual 0x80000000 and OXFFFFFFFF
address space:

USER

KERNEL

Back to this simple picture

Code & Data |Code & Datg Code & Data | Code & Data
Stack Stack Stack Stack
Stack Stack Stack Stack

Stack Stack Code & Data

elect the operating system to start:

Microsoft Windows XP Professional
H OW DO Windows NT Workstation Uersion 4.00
Windows NT Workstation Uersion 3.51

W E BOOT Windows NT Workstation Version 4.80 [UGA mode

Windows NT Workstation Version 3.51 [VEA mode

M5-D0S 6.22 and Windows for Workgroups 3.11
TH IS Microsoft Windows Recovery Console

TH I N G ? Use the up and down arrow keys to move the highlig

Press ENTER to choose.

For troubleshooting and advanced startup options f

Booting

Physical
Memory
(1)
BIOS copies ROS
Disk beotiaader
ittt o Boolheader
C r- mlruchong
5 (2) 0 daty
Bootloader ... {..... Boothader
OS kemel - , W% S
.............................. o 05 keresd
W‘n app oo E mtrychong
: [3) md daty
:-————“: OS kernel copies
- pnamicatom
e — o Lagnapp
instructicns
and data

Next up

Processes: Chapter 3 (first part) and Chapter 4

